

CONTENTS

- **02** Foreword
- **03** Actionable Insights
- **04** Strategic Drivers of IT Modernization
- **07** The State of Al in Energy
- 11 Case Study [TBD]
- 12 Overcoming Barriers to Al and GenAl Adoption
- **14** IT Modernization in Practice
- 16 Legacy Systems: Modernization and Impact
- 19 Change Management and Employee Engagement
- 21 Methodology

Copyright © 2025 Reuters.

No reproduction or distribution is permitted.

FOREWORD

Words in here please

Liam Stoker
Head of Market Insights
Reuters Events

ACTIONABLE INSIGHTS

Cybersecurity and AI the twin pillars of IT modernization

Energy organizations must simultaneously strengthen cybersecurity and accelerate Al adoption as both are seen as critical to operational resilience and innovation.

Data quality and integration are foundational to success

Prioritize improving data quality and ensuring seamless integration across systems. Nearly 80% of respondents cite data reliability as the top objective for data platform investments.

ESG and sustainability remain strategically important

Despite concerns over the perception of sustainability, it remains important for IT modernization to align with ESG goals, especially for large enterprises.

Al use is expanding across the value chain

Deploy AI in high-impact areas such as infrastructure maintenance, risk management and energy trading. Popular future use cases include predictive maintenance and strategic planning

GenAl adoption requires strategic planning and talent development

Address barriers to GenAl by developing a clear implementation strategy, investing in internal expertise and sourcing high-quality training data tailored to energy-specific use cases.

Cloud strategies must be flexible and scalable

Adopt hybrid and multi-cloud architectures to meet diverse operational needs. AWS, Microsoft Azure and Google Cloud dominate the energy sector's cloud landscape.

Legacy system modernization must be phased, well planned, sufficiently funded and aligned to business imperatives

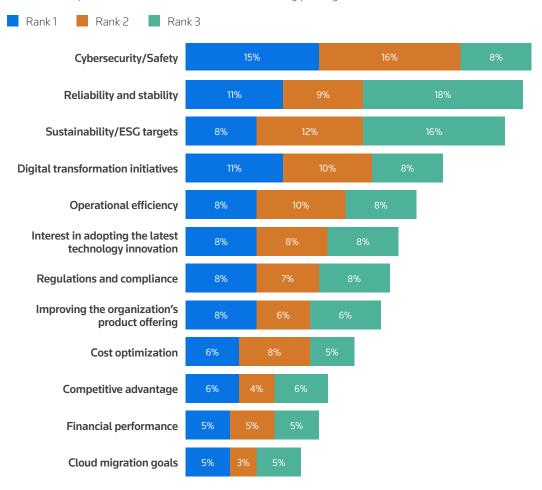
Modernize legacy systems in phases to manage integration risks and avoid downtime. Budget allocation is critical.

Employee engagement drives modernization success

Ensure employees are engaged throughout the modernization process, particularly in areas that require coordinated change management. Usage tracking and tailored tools boost adoption.

STRATEGIC DRIVERS OF IT MODERNIZATION

There are three primary drivers for energy organizations making IT investments: cybersecurity, system reliability and stability, and sustainability targets. Cybersecurity, selected as a top-three consideration by 39% of respondents, is perhaps an unsurprising inclusion given the importance placed on system safety amidst a backdrop of increasing cyber-attacks. Energy infrastructure is widely perceived as a target for cyber-attacks, with many nations forcing energy system operators to have robust protections in place.


The U.S. Department of Homeland Security has warned that foreign actors continue to actively pre-position to target critical infrastructure networks, including energy, while research conducted by Trustwave has claimed that ransomware attacks on the energy and utilities sector increased by 80% last year.

Towards the bottom of the list of selected drivers are cost optimization (19%), competitive advantage (16%) and financial performance (15%). That these three factors, all linked towards an organization's fiscal performance, are towards the bottom of our respondents considerations suggests that IT investments are not viewed through a financial lens but an operational one and, as a result, are not considered purely as a cost to the business.

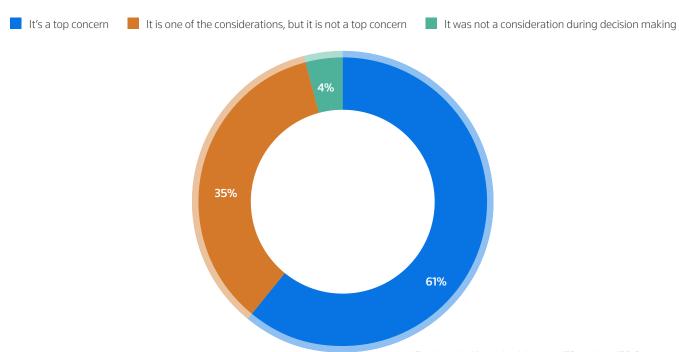
FIGURE 1

Cybersecurity, reliability and sustainability are the leading drivers for IT investments today

What are the top three business considerations that are driving your organization's decisions in IT investments?

Total sample; Unweighted; base n = from 2 to 60; total n = 156; 154 missing Reuters Events' Future-Proofing Energy Assets Survey

publicis sapient


With regards to ESG and sustainability, our research shows that a majority of respondents consider it a leading concern for their organization's IT modernization strategy. Just four percent of respondents said ESG was not a consideration during the decision-making process. This is a clear indication as to how ESG and sustainability permeates through an organization's entire operation, rather than simply its core business.

This is seen more acutely within very large businesses. While around 50% of energy organizations with annual revenues below \$100 billion stated ESG/sustainability as a top concern for their IT modernization strategy, 83% of businesses with revenues in excess of \$100 billion did so. ESG and sustainability can therefore be considered a particular imperative for very large energy market players.

FIGURE 2

ESG and sustainability remains a leading factor within IT modernization strategies

How much does ESG/sustainability factor into your IT modernization strategy?

Total sample; Unweighted; base n = 153; total n = 156; 3 missing

FIGURE 3

Better quality and reliability of data is the most important objective for data platform investments

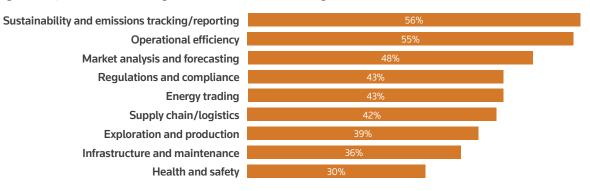
What is the most important objective or outcomes of investments in data platforms? Please select all that apply.

Total sample; Unweighted; base n = 152; total n = 156; 4 missing

publicis aws

Data is, of course, of significant importance for energy organizations, with investments in data expected to unlock value across the operation. In tandem with figure 2, greater investments in data strategies are widely expected to deliver the most value in sustainability and emissions tracking and reporting, another indicator as to the seriousness with which energy companies are approaching their sustainability commitments. This is universally the case across the industry, as figures 4a and 4b illustrate.

Equally, energy companies also see a direct link between data-related investments and operational efficiency. Greater quality and quantity of data, and its ability to educate decisions at an operational level, are deemed key to driving efficiency from existing operations.

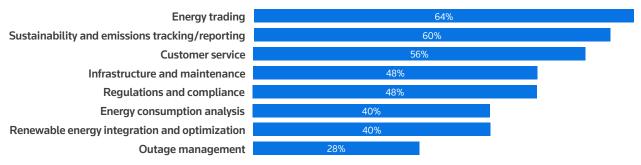

There is a slight change in approach for utilities and grid owners/operators however, with this particular segment of the industry considering that energy trading would benefit most from investments in data strategies and tools.

Investments in IT will, however, only deliver value if the data used is of sufficient quality and reliability. A significant majority (79%) of respondents said that better quality and reliability of data is the most important objective of data platform investments, speaking to a near universal appreciation of the inherent value of data.

FIGURE 4a

IT professionals in the energy sector consider most value would be driven in sustainability reporting and broader operational efficiency

At your organization, in which areas would greater investments in data strategies / tools deliver the most value? Please select all that apply



Total sample; Unweighted; base n = 145; total n = 156; 11 missing

FIGURE 4b

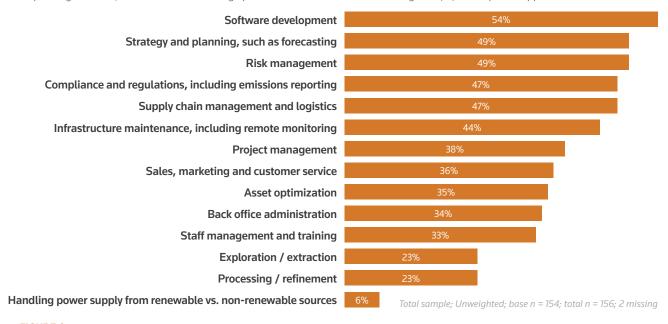
Energy trading professionals believe IT investments would drive value in their own department first and foremost

At your organization, in which areas would greater investments in data strategies / tools deliver the most value? Please select all that apply

Total sample; Unweighted; base n = 25; total n = 156; 131 missing Reuters Events' Future-Proofing Energy Assets Survey

THE STATE OF AI IN ENERGY

Al and generative Al (GenAl) has emerged as a significant source of disruption and change across multiple industries, and the energy sector is no different. The technology is being applied widely and across organizations of all shapes and sizes, and is clearly playing a pivotal role in the modernization and transformation of IT.


Our research shows that AI is being applied across a wide range of operational areas within energy organizations today. While the most popular use case is in software development, identified by more than half (54%) of respondents, we also see strong support for using Al across risk management, strategy and planning, compliance and regulation and supply chain management and logistics.

If GenAI is considered an integral enabler for IT modernization, then energy organizations are frequently turning towards established providers of GenAl for procurement. Microsoft, OpenAl, Google and Amazon are the primary providers of Al tools for the industry, drawing the conclusion that the energy sector is keen to procure off-the-shelf solutions from proven providers at this stage.

FIGURE 5

Al is being mostly applied to software development tasks, but broadly across most businesses

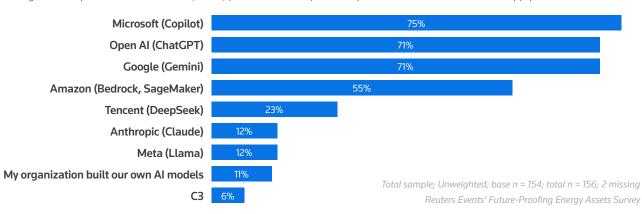

At your organization, in which of the following operational areas has Artificial Intelligence (AI) already been applied? Please select all that apply.

FIGURE 6

Energy organizations are turning to Microsoft, OpenAI and Google for their AI demands

Has your organization procured Generative AI (GenAI) products from any of these providers? Please select all that apply.

We see a much smaller share (11%) of organizations developing their own models - something which may be directly attributable to the cost and resource requirement – while more dedicated solutions are also only procured by a distinct minority of respondents.

Energy organizations are also commonly turning towards existing legal standards, such as the General Data Protection Regulation (GDPR) and the Organization for Economic Co-operation and Development (OECD) standard, to govern their use of Al, rather than any Al-dedicated framework, either internal or external.

As Al continues to increase in sophistication, so too will the number of uses energy organizations find for it internally. As figure 8 shows, use cases for AI are widely expected to develop in strategy and planning, risk management, infrastructure maintenance and regulatory compliance in the future.

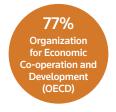
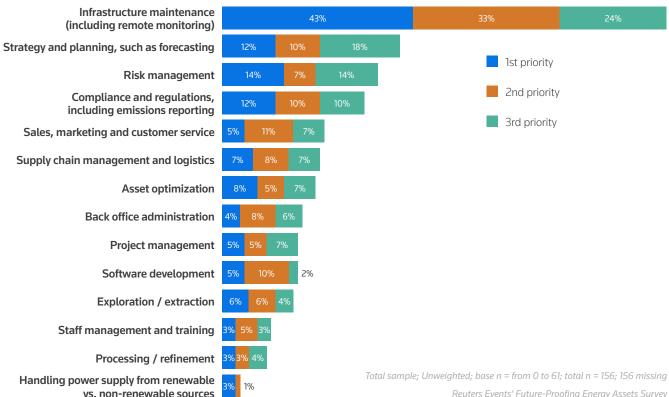

While strategy and planning and risk management are already of great importance to the energy sector, the prospect of Al remotely conducting monitoring and informing central teams of asset health and performance needs is clearly of major interest. This also aligns with how a majority (52%) of respondents expect AI to have the most impact in predicting possible issues and aggregating the necessary data to troubleshoot.

FIGURE 7

GDPR and OECD guidance are driving Al-related governance today

What AI governance frameworks do you use? Please select all that apply.



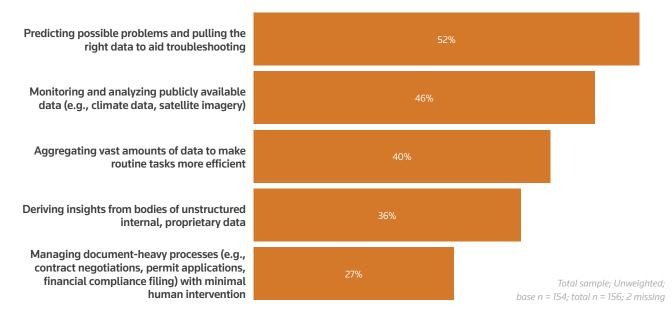
Total sample; Unweighted; base n = 154; total n = 156; 2 missing

FIGURE 8

Energy professionals see major potential for AI to transform infrastructure maintenance

At your organization, in which of these operational areas do you expect more Al use cases to develop in the future? Please select the top three.

Al's promise to streamline maintenance tasks and make them run more efficiently stands to unlock real value for energy organizations moving forward.


While AI may have been in use across energy organizations for some time now, agentic Al is perhaps the latest development to garner significant attention. Agentic Al's ability to conduct more routine or laborious tasks in tandem with human operation and oversight is highly sought after, with energy organizations looking towards this to aid energy trading teams.

These teams see this as being particularly transformative for risk assessment and monitoring purposes.

FIGURE 9

Al is expected to transform predictive maintenance, enabling more streamlined troubleshooting

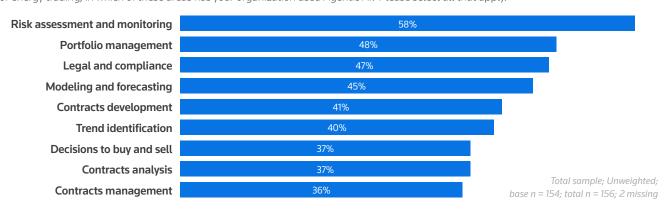

Which of these specific areas do you see AI to have the most impact? Please select top two.

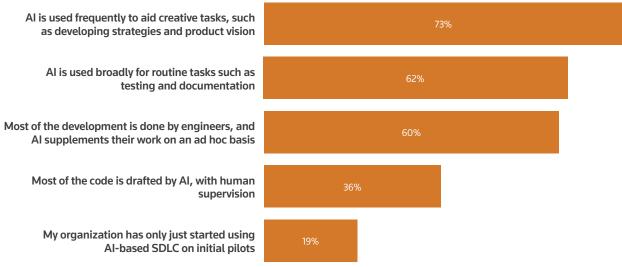
FIGURE 10

Al could sufficiently Al energy traders in risk assessment and monitoring going forward

For energy trading, in which of these areas has your organization used Agentic AI? Please select all that apply.

publicis sapient

Al is also applied across a range of tasks relating to software development lifecycles (SDLC), and we see the technology being used frequently to aid more creative tasks as part of this process. A majority of respondents also stated that is being used broadly for routine tasks, while 60% indicated that Al is used to supplement engineer-led software development.


With more specific relevance to continuous integration and continuous deployment (CI/CD) practices, AI is mostly used to conduct automated testing of software and coding prior to release. We also see a majority of respondents state that Ai is used across performance monitoring and code analysis, yet further evidence of its all-round application within SDLC teams and functions.

Given Al's all-round use and adoption, it is therefore unsurprising that a significant majority (74%) of respondents said they expect investments in Albased SDLC to increase over the next three years. Indeed, just one percent of respondents said they expect investments to fall in that timeframe, yet further indication of the importance being placed on Al within an SDLC setting.

FIGURE 11

A majority of energy professionals said AI is already used frequently within SDLC tasks

What is the current level of AI integration in your organization's software development lifecycle (SDLC)? Please select all that apply.

Reuters Events' Future-Proofing Energy Assets Survey

730/o
Share of respondents who said
Al is integrated into their CI/CD
pipeline for automated testing

7496
Share of respondents who expect investments in Al-based SDLC to increase over the next three years

CASE STUDY

Genectempores id maximin ullabo. Ehenti tem quiate modit qui doles ex es que provid eum, nis inimagnis alitiantur, apicia con restion prernates essum net alia cus dolumque quae de aut adis molupie nihicium fugiant iaeprov itatendundi dolorem comni dolluptatem isto tectur sum fugiatur?

Ut in perum ressit voluptat.

Tus aut ilis de officide prae odit premoluptur, consequi dolendebit magnis molorum veniendae. Seditincto iliquod igniendae prendi unt qui volorrum repudandae prehend amusamus ellis ut il in explabo. Nam, voluptates dusaper ibusam labo. Postemp oratur am nullaut quidelitem dolupta tempers perepedia qui dolupienist ut fugiam quo et harum necum qui nat molectur serum et aut qui autem. Tinteca eribusc idelesti tem facersp ersperem nectiume quis sit es nihit, nest aut di dioriae ditatio nserciae nimus quam facea cora qui coreserrupta adi asped quuntus aut officim aute nos ex et at.

Lestiis tiatem et offictem venia int ea volupta pelluptati imolutem fugitatus enimus, aspedio endia deles plaut re, offic tem es sequossite cuscien iendipiet et et aperum lament aut volecto maio tem ventemp orehende rest

estrum sit ut alignisti del int alibusti aliciaere, quatiat ustistrum esto to officiis nem. Harum imil maioria secum reptat.

Te etus, illupti dolupist aut la sequi iumquam fugiae. Ut ipsament poraturi autatem poreper roreicitem sus ulpa sequi natem excestrum inis es mos vendictur, odiatent volorit ipiciis temolup tatque comnimagnis vit ped ea cuptat venditassunt qui alicia voluptae sit estium rerat a debisit a aut ea qui volore sus ellant.

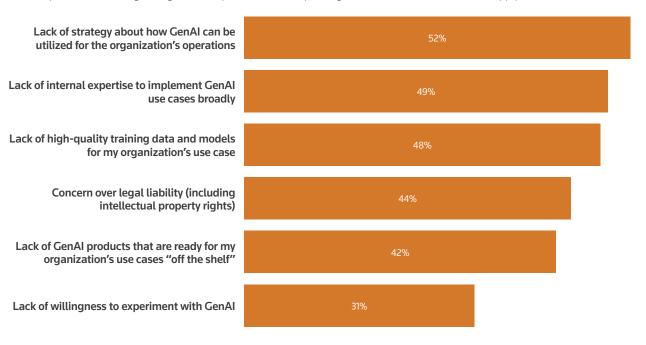
Ibuscius cusantem dempos sint auditibus molupta doloreh enderae laborer spicae pratur sin pro venis am vent, ilicius del ium quiaepe lictis audam, ut dolupta tiusciame voluptatiis rerspeliqui omniamet quo etures dolorem. Parum alis assim nullor adi accus acesecta doluptatene necus et rem que volutent pelest alibusa ndigend aeratempori volore et ipsant in consequ amusciet fuga. Di ipitate mporibus.

Odignis si consed qui con nes dici blabore quiscillab illaut quae quos simus, omnis sum, sum a volorectur? Archicae. Ut eseque officita voloriam, offictem aut pa nihitate enis inullupta sum simet quo omniscium quam abo. Archici llestio reruntur? Arum facipiet ipsant aliquam, volupta tiatus eturibus est omnis accum quae dolore et qui omnihillaut aut quia int quiae nis most, qui dus sit et essectatur? Cim recti voluptatias as miliquam velique verepra temporpor sita pelita int veniminulla autempel id eaquam, is ra nemos is dolo ditas apiciam, consernatis escidenda sunt.

Solor sime dit ium, solupta tibearc hilicta volore et pora doloruptate nobisim volupta quibus eum, susdam hil imagnia sam quiandit, qui nature net vid quas ea quos autaque natur? Quiam vent int delit rem dolupta tiatus, alis ad moluptas pe cus accat.

Uptatur site conet expliquat eostius molupta tiatia volesto eos ut faccuptatio. Itaqui conectus imodignis eum et occus aruptas se offictu resequi ipiet ped quam faccatum id mod estor aut hillaci magniendel mosandam, nullabore audi corum volupid molorum quis atus aut harit vellupta cus aut audam vel molorecupta net, non pressim quo eum ius, nos doloriae ex etum fuga. Nam quaessequis dolesec tatiuribus, sequodit pere veritatum sundunto iuntio omnis volorepudio omnihil lenihici comnist, sin eos es ex excernat laccatqui dolorib eariasinus aut asi ommod maio tore porum sit laborum eosam rehendis quid untis veleniet odis eos aliae vernam resto et quis

OVERCOMING BARRIERS TO AI AND GENAI ADOPTION


With GenAI clearly afforded such importance within an IT team's overall strategy, it is critical to understand the barriers and challenges such teams face in adopting the technology wholesale.

As figure 12 shows, energy organizations consider three primary challenges: a lack of overall strategy around how GenAl can actually be utilized, a lack of internal expertise when it comes to implementing GenAl, and a lack of high-quality training data and models that suit specific use-cases.

While all three are perhaps not considered insurmountable, when considered together they point to a lack of internal resources and considerations for how GenAI can be integrated and used. This may be attributable to how relatively nascent GenAI is, with these challenges subsiding as the technology and organizational understanding of it matures.

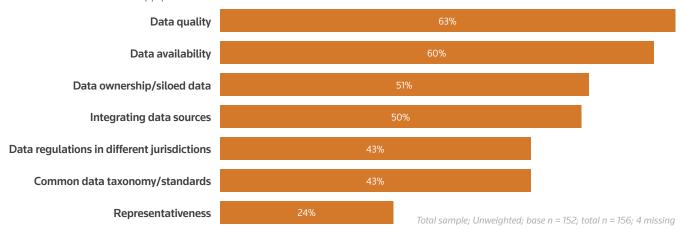
FIGURE 12 Energy organizations could benefit from a more cohesive operational GenAl strategy

What do you think is holding back greater adoption of GenAI at your organization? Please select all that apply.

Total sample; Unweighted; base n = 154; total n = 156; 2 missing Reuters Events' Future-Proofing Energy Assets Survey

publicis **aws** sapient

Of perhaps broader concern for energy organization is how data quality and availability are evidently preventing organizations from extracting valuable insights from their customers. With further issues pertaining to data ownership and integrating available data, identified by 51% and 50% of respondents respectively, organizations evidently see more structural issues within the data practice.


Data platforms are often regarded as one way to solve many of the challenges and obstacles within data practices, and our research indicates that two factors are being prioritized above all others when it comes to selecting a particular platform to adopt. Any data platform must be easy to integrate with existing data workflows and must meet all of the organizational requirements.

These two factors are placed above licensing costs, previous user experience and training requirements, indicating that organizations seek systems that are primarily easy to use and fits all requirements.

FIGURE 13

There is broad concern around data quality and availability when it comes to drawing customer insights from existing data

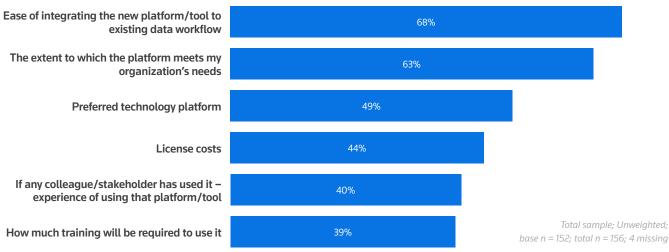

What are the greatest challenges to drawing insights about your customers for your organization's business needs from internal and external data? Please select all that apply.

FIGURE 14

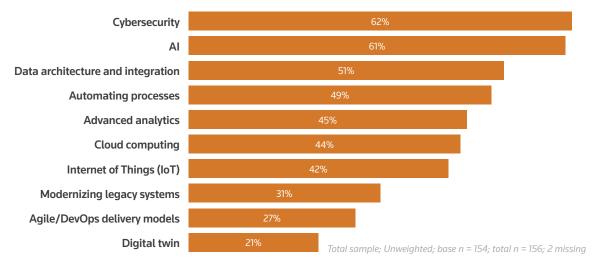
Energy organizations prioritise platform integration and efficacy over cost

What are the key factors in selecting a data platform? Please select all that apply.

IT MODERNIZATION IN PRACTICE

Having established the primary drivers for IT modernization and the role AI is expected to play, it is unsurprising to see the leading priorities for IT modernization programs as being related to cybersecurity and AI. This is evidence of energy organizations being across both risks and opportunities; the threat posed by cyber-attacks and the potential for AI to transform how their organization operates.

These areas have been identified by 62% and 61% of respondents respectively, however we also see high levels of awareness for areas including data architecture and integration, process automation, advanced analytics and cloud computing.


With specific regards to cloud computing projects, figure 17 highlights how energy organizations are mostly adopting both hybrid and multi-cloud projects. This would indicate that companies are mostly using both approaches, possibly to meet distinctly separate needs, with private or on-premises cloud computing capabilities a cornerstone of any IT program.

Provision of cloud computing meanwhile is dominated by Amazon Web Services (AWS), with 82% of respondents indicating that they are used for cloud computing today. AWS is followed by Microsoft Azure and Google Cloud, selected by 74% and 66% of respondents respectively.

FIGURE 14

IT modernization programs are mainly targeting cybersecurity concerns and Alrelated demands

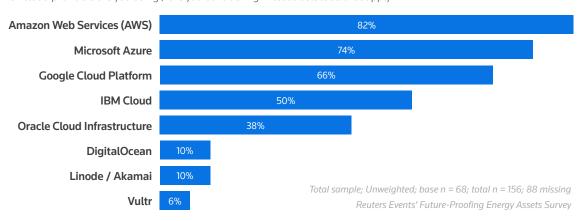

What are the priority areas in your organization's IT modernization programs? Please select all that apply.

FIGURE 15

Cloud procurement is dominated by major providers such as AWS, Microsoft, Google and IBM

Which cloud providers are you using / are you considering? Please select all that apply

It modernization programs are having to address a wide array of priorities and targets and, as a result, our research shows that cost or budgetary constraints is the most prevalent challenge faced during this process. Nearly three-quarters (73%) of respondents said cost was a key challenge when delivering IT modernization programs, followed by the complexity of and other issues experienced with legacy hardware and software. With a majority expecting investments in AI-led SDLC to increase over the coming years (see page 10), concerns over cost may dissipate as the use of AI in SDLC promises to reduce the cost associated with technology modernization.

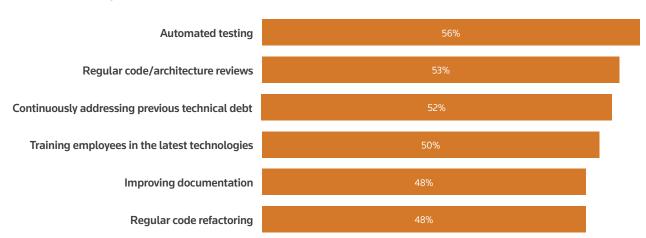
With cost having already been established as a significant challenge, the prospect of technical debt can become apparent as organizations elect for lower-cost solutions, rather than the most appropriate or scalable solution at the time.

We see a range of different strategies and approaches being used to addressed technical debt, from automated testing (56%) to regular code refactoring (48%). That no one strategy or approach is strongly favored over others within our sample suggests that technical debt is not just a recurring issue for the energy sector, but one with no silver bullet solution. Energy organizations and IT teams must therefore consider technical debt during the oversight and delivery of IT modernization programs more generally.

FIGURE 16

Cost is the biggest challenge professionals face during IT modernization program

What are the key challenges you faced during your IT modernization programs? Please select all that apply.



Total sample; Unweighted; base n = 153; total n = 156; 3 missing

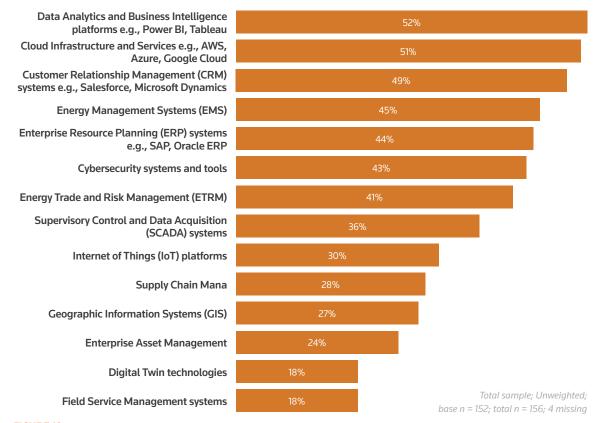
FIGURE 17

Addressing technical debt is a multi-faceted strategy for energy professionals

How are you addressing technical debt? Please select all that apply

Total sample; Unweighted; base n = 153; total n = 156; 3 missing Reuters Events' Future-Proofing Energy Assets Survey

LEGACY SYSTEMS: MODERNIZATION AND IMPACT


The scale of IT modernization programs becomes apparent when we consider the number of systems that have been improved upon or modernized. As figure 18 shows, more than 40% of respondents have identified seven IT systems or processes that have been modernized to date, from data analytics and business intelligence to energy trading and risk management systems. All of these should be considered core components of a modern IT system, requiring dedicated focus during any IT modernization project.

These is decidedly less concentration, however, with regards to the vendors or providers being used for modernizing legacy assets and IT functions. IBM and Microsoft are the most-used vendors, each selected by 30% of respondents, with Amazon/AWS a close third on 21%.

FIGURE 18

IT modernization is mostly targeting data analytics, cloud infrastructure and CRM systems

At your organization, which IT systems have been modernized? Please select all that apply

FIGURE 19

Leading five vendors for legacy modernization projects

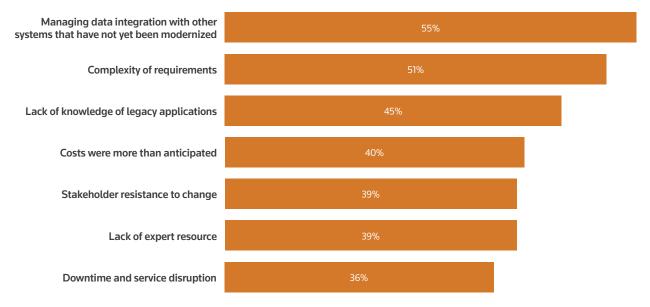
(Other providers mentioned include: Oracle, Cappemini, Infosys, Deloitte, TCS, Cognizant, SAP and OpenLegacy)

IT modernization projects are often delivered at scale and speed. Only one-third (33%) of respondents reported that legacy systems took longer than nine months to modernize, with nearly one-third (32%) requiring between seven and nine months. While this should only be used as illustrative, energy organizations are largely modernizing systems within a year.

Respondents are, however, reporting an array of risks and challenges. Perhaps most notable is how more than half (55%) of respondents report challenges in managing data integration with other systems that have yet to be modernized. IT modernization may be delivered in a phased approach in order to reduce downtime and upfront costs, however this is evidently having knock-on or residual effects within operations.

In cooperation with

A majority of legacy modernization projects complete within nine months



Total sample; Unweighted; base n = 152; total n = 156; 4 missing

FIGURE 21

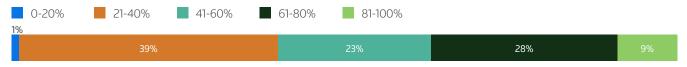
Among an array of risks and challenges, data integrations are causing most concern

What risks or challenges have you encountered during the legacy modernization process? Please select all that apply.

Total sample; Unweighted; base n = 152; total n = 156; 4 missing Reuters Events' Future-Proofing Energy Assets Survey

oublicis **aws** sapient

Costs being greater than anticipated was identified as a challenge by 40% of respondents, however our research indicates healthy budgets are being afforded to modernizing legacy systems. Nearly two-thirds (60%) of respondents said at least 41% of their organization's overall tech budget was being allocated to modernizing legacy systems, which is testament to both the scale of the project and awareness of the costs involved.


Modernization projects are also being judged against a diverse range of metrics for success. The most important to energy organizations today is scalability or ability to service more users/transactions (selected by 50% of respondents), which is perhaps indicative of the broader growth strategy for energy organizations today.

The same can be said for how 47% of respondents said IT modernization is expected to provide greater system reliability and reducing outages. System outages, along with threats posed by cyber-attacks, can be significantly costly for energy organizations, both fiscally and reputationally. Ensuring measures are in place to reduce these are key to successful IT modernization projects today.

FIGURE 22

A majority of respondents said between 21 – 60% of their overall tech budget is being allocated towards modernization projects

Of your overall technology budget, approximately what is the % share allocated to modernizing legacy systems?

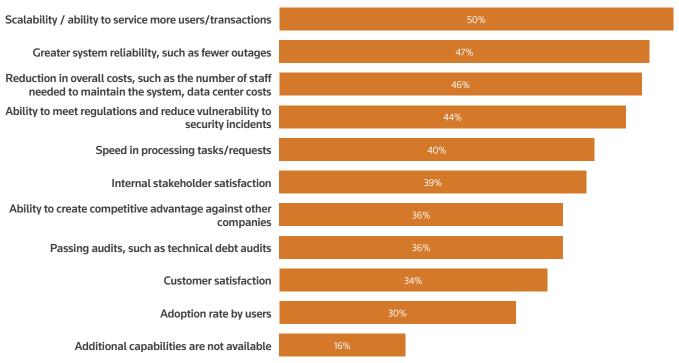


FIGURE 23

Total sample; Unweighted; base n = 152; total n = 156; 4 missing

Modernization investments are mainly being judged on their impacts on scalability and reliability

How are investments in projects for modernizing legacy systems being judged? Please select all that apply.

Total sample; Unweighted; base n = 152; total n = 156; 4 missing

Reuters Events' Future-Proofing Energy Assets Survey

CHANGE MANAGEMENT AND EMPLOYEE **ENGAGEMENT**

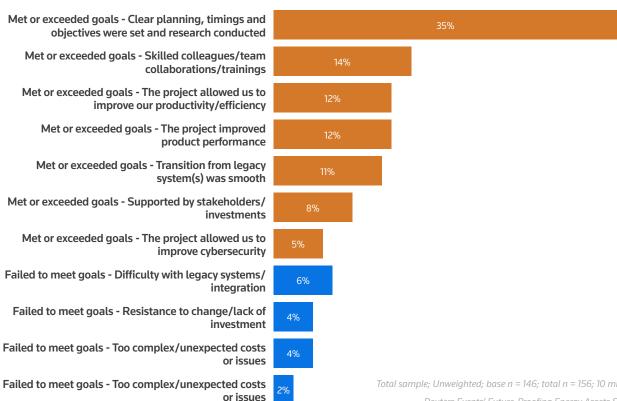
Given the importance of IT modernization projects to ensuring energy organizations are fit for future challenges, the sector should take confidence in their rate of success. Just 16% indicated that their organization's most recent IT modernization project did not meet the goals set, with 13% of them suggesting the project had just fallen short. Indeed, 14% said the project had exceeded expectations.

The success of IT modernization projects in meeting targets has been largely attributed to sufficient planning and preparation, in addition to ensuring that timing and overall objectives are clear and wellresearched. This should therefore be considered a pre-requisite for any IT modernization project. Meanwhile, of those that have failed to meet their goals, the most common complaint among respondents was of difficulties with legacy systems or integrating the two.

FIGURE 24

It's rare that IT modernization projects are failing to meet pre-determined objectives

Thinking of your organization's most recently completed IT modernization project, how would you rate the success in terms of how much it achieved the goals previously set out?



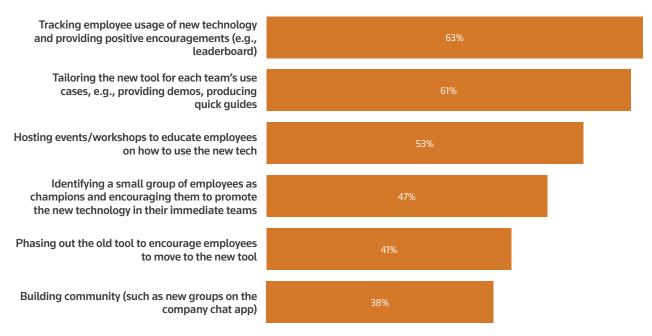
Total sample; Unweighted; base n = 152; total n = 156; 4 missing

FIGURE 25

Determining clear planning, timings and objectives is critical to project success

Why did that IT modernization project fail or meet/exceed its goals? [Coded from open text]

Total sample; Unweighted; base n = 146; total n = 156; 10 missing Reuters Events' Future-Proofing Energy Assets Survey


Another critical component of IT modernization projects is ensuring that employees are engaged throughout the process. From initial project scoping to delivery and eventual change management, employees must be included to ensure new systems and processes are adhered to.

A significant majority (91%) of respondents reported that employees were engaged throughout their most recent IT modernization project, a reflection of how businesses have approached such programs. Organizations reporting success with employee engagement attributed this to a range of different strategies, including tracking employee usage of new technologies (63%), tailoring tools for specific use cases (61%) and hosting events to showcase new technologies (53%). Less success, meanwhile, was reported through creating communities to support new technologies.

FIGURE 26

Energy organizations are tracking employee usage and tailoring tools for specific purposes to increase engagement

What efforts were made to improve employee engagement? Please select all that apply.

Total sample; Unweighted; base n = 152; total n = 156; 4 missing Reuters Events' Future-Proofing Energy Assets Survey

METHODOLOGY

This report is based on the findings from *Reuters Events' Future-Proofing Energy Assets Survey,* carried out in Q2 2025. Survey invitations were via an external panel.

The survey engages with professionals from a range of organizational types across the energy value chain such as oil and gas companies, renewables developers, independent power producers, grid owners/operators and others. To qualify for this survey, respondents were required to say that their role involved one of the following: managerial/decision-making capacities within the IT/digital teams of energy organizations, exposure to energy trading and/or exposure to energy supply.

Respondents were also required to indicate that their organization operates in at least one of Europe, the Middle East or North America. A total of 156 respondents across the globe participated in the survey with 63% of respondents' organizations operating in Europe, 43% in North America, 17% in the Middle East, 9% in Asia-Pacific, 5% in South America and 3% in Africa.

Lastly, respondents needed to answer that their organizations annual revenue is \$250m+. 13% of respondents said \$250m-\$1bn, 38% said \$1bn-\$50bn, 15% \$50bn-\$100bn and 34% \$100bn+.

The data was gathered through web surveys which were designed and implemented following strict market research guidelines and principles. For data analysis, significance testing at 95% confidence intervals was conducted. There might be limitations where the survey cannot represent an overview of all limited partners; the representativeness might be limited in certain regions.

